Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 270: 107299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778108

RESUMO

Current operational models for nuclear cloud rise over land were developed and validated using observations from shallow-buried or surface detonations, where lofted soil quickly mixed with fission products from the detonation. These models poorly predict fallout from elevated detonations near the fallout-free height of burst (FFHOB), where interactions with the ground are limited and the mixing of fission products and lofted soil is incomplete. Fallout-free is a misnomer at this HOB, as fallout was observed in these cases, but was below the levels of concern, especially off-grounds of the nuclear test site. To correctly characterize and model fallout from detonations near the FFHOB, models must be developed which can capture the stratified nature of the particle and activity-size distributions within the cloud. Previously, it was shown that the Weather Research and Forecasting (WRF) model can accurately simulate nuclear cloud rise for airbursts with little to no ground interactions (Arthur et al., 2021). That work is expanded here by (1) using a radiation-hydrodynamics code to improve the fireball initialization in WRF, (2) further developing an aerosol package from WRF-Chem to simulate lofted soil, and (3) combining the WRF cloud rise simulations with the operational models used at the National Atmospheric Release Advisory Center (NARAC) for fallout modeling. Using this combination of codes, the Upshot-Knothole Grable detonation, which was just below the FFHOB, is simulated from seconds after detonation through cloud rise and fallout, and results are compared to historical test data. The results show improved prediction of dose rate and highlight the need to correctly characterize the entrainment of material into the cloud and the subsequent mixing of fission products with entrained material.


Assuntos
Monitoramento de Radiação , Cinza Radioativa , Cinza Radioativa/análise , Monitoramento de Radiação/métodos , Modelos Teóricos , Tempo (Meteorologia) , Aerossóis/análise
2.
Inorg Chem ; 60(10): 7372-7380, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33904730

RESUMO

A series of (cyclopentadienyl)cobalt(III) half-sandwich complexes (1-4) supported by bidentate bis(phosphino)amine ligands was synthesized and characterized by NMR spectroscopy, X-ray crystallography, and cyclic voltammetry. The CoIII-hydride complex 4-H bearing the bis(cyclohexylphosphine) ligand derivative was successfully isolated via protonation of the neutral reduced CoI complex 5 with a weak acid. Experimental and computational methods were used to determine the thermodynamic hydride accepting ability of these CoIII centers and to evaluate their reactivity toward the oxidation of formate. We find that the hydride accepting ability of 1-4 ranges from 71 to 74 kcal/mol in acetonitrile, which should favor a highly exergonic reaction with formate through direct hydride transfer. Formate oxidation was demonstrated at elevated temperatures in the presence of stoichiometric quantities of 4, generating carbon dioxide and the CoIII-hydride complex 4-H in 72% yield.

3.
Inorg Chem ; 60(7): 4996-5004, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764048

RESUMO

Reaction of 1 equiv of KN(SiMe3)2 with 9-fluorenone results in the formation of (Me3Si)N═C13H8 (1) in high yield after work-up. Addition of 1 equiv of phenol to 1 results in rapid desilylation and formation of 9-fluorenone imine, HN═C13H8 (2). Subsequent reaction of 2 with 1 equiv of LiNiPr2 results in deprotonation and formation of [Li(Et2O)]4[N═C13H8]4 (3) in good yield. Reaction of 1 equiv of KN(SiMe3)2 with 2-adamantanone for 7 days at room temperature results in the formation of (Me3Si)N═C10H14 (4) in good yield. Dissolution of 4 in neat MeOH results in rapid desilylation concomitant with formation of 2-adamantanone imine, HN═C10H14 (5). Subsequent reaction of 5 with 1 equiv of LiNiPr2 results in formation of [Li(THF)]4[N═C10H14]4 (6). Both 3 and 6 were characterized by X-ray crystallography. Finally, reaction of CrCl3 with 3.5 equiv of 6 results in formation of the [Cr2]6+ dimer, [Li][Cr2(N═C10H14)7] (7), which can be isolated in modest yield after work-up. Complex 7 features a Cr-Cr bond length of 2.653(2) Å. Additionally, solid-state magnetic susceptibility measurements reveal strong antiferromagnetic coupling between the two Cr centers, with J = -200 cm-1.

4.
Proc Math Phys Eng Sci ; 477(2250): 20210154, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35153567

RESUMO

We demonstrate that the geometric similarity of Taylor's blast wave persists beyond reflection from an ideal surface. Upon impacting the surface, the spherical symmetry of the blast wave is lost but its cylindrical symmetry endures. As the flow acquires dependence on a second spatial dimension, an analytic solution of the Euler equations becomes elusive. However, the preservation of axisymmetry, geometric similarity and planar symmetry in the presence of a mirror-like surface causes all flow solutions to collapse when scaled by the height of burst (HOB) and the shock arrival time at the surface. The scaled blast volume for any yield, HOB and ambient air density follows a single universal trajectory for all scaled time, both before and after reflection.

5.
Inorg Chem ; 59(2): 1471-1480, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31913609

RESUMO

Herein, we report the synthesis and characterization of the mixed-valent, ketimide-stabilized Pd7 nanosheet, [Pd7(N═CtBu2)6] (1), via reaction of PdCl2(PhCN)2 and Li(N═CtBu2). tBuCN, isobutylene, and isobutane are also formed in the reaction. The presence of these products suggests that Li(N═CtBu2) acts as a reducing agent in the transformation, converting the Pd(II) starting material into the mixed-valent Pd(I)/Pd(0) product. Complex 1 features a hexagonal planar [Pd7]6+ core stabilized by six ketimide ligands, which surround the [Pd7]6+ center in an alternating up/down fashion. In situ NMR spectroscopic studies, as well as density functional theory (DFT) calculations, suggest that 1 is formed via the intermediacy of the bimetallic Pd(II) ketimide complex, [(tBu2C═N)Pd(µ-N,C-N═C(tBu)C(Me)2CH2)Pd(N═CtBu2)] (2). DFT calculations also reveal that 1 is a rare example of an all-metal aromatic nanocluster with hexagonal symmetry, sustaining a net diatropic ring-current of 10.6 nA/T, which is similar to that of benzene (11.8 nA/T) or other well-established transition-metal aromatic systems. Finally, we have found that 1 reacts with Ph3P, cleanly forming the tris-ligated 16-electron Pd(0) phosphine complex, Pd(PPh3)3 (3), suggesting that 1 could be a useful precatalyst for a variety of cross-coupling reactions.

6.
Chem Sci ; 11(18): 4753-4757, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34122931

RESUMO

Reaction of FeBr2 with 1.5 equiv. of LiN[double bond, length as m-dash]CPh2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe4(N[double bond, length as m-dash]CPh2)6] (1) in moderate yield. Formally, two Fe centers in 1 are Fe(i) and two are Fe(ii); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe4]6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1, indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm-1. Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.

7.
Inorg Chem ; 58(23): 15927-15935, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710476

RESUMO

Herein we report the synthesis and characterization of a linear, two-coordinate Pt(II) ketimide complex, Pt(N═CtBu2)2 (1), formed via the reaction of PtCl2(1,5-COD) with 2 equiv of Li(N═CtBu2). Also generated in the reaction is the bimetallic complex [(tBu2C═N)Pt(µ-N,C-N═C(tBu)C(Me)2CH2)Pt(N═CtBu2)] (2). Both complexes 1 and 2 have been characterized by NMR spectroscopy and X-ray crystallography. Notably, complex 1 exhibits short Pt-N distances (av. Pt-N = 1.817 Å) and an unusually deshielded 195Pt chemical shift (δPt = -629 ppm) with a large 1J(195Pt,14N) coupling constant (537 Hz). These data, in combination with a detailed density functional theory electronic structure analysis, reveal the presence of highly covalent Pt═N multiple bonds formed by a combination of σ-donation, π-donation, and π-backdonation.

8.
J Am Chem Soc ; 141(38): 15024-15028, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31460756

RESUMO

Direct enantioselective α-alkylation of 2-alkylpyridines provides access to chiral pyridines via an operationally simple protocol that obviates the need for prefunctionalization or preactivation of the substrate. The alkylation is accomplished using chiral lithium amides as noncovalent stereodirecting auxiliaries. Crystallographic and solution NMR studies provide insight into the structure of well-defined chiral aggregates in which a lithium amide reagent directs asymmetric alkylation.


Assuntos
Lítio/química , Compostos Organometálicos/química , Piridinas/química , Piridinas/síntese química , Alquilação , Estrutura Molecular , Estereoisomerismo
9.
Inorg Chem ; 58(13): 8739-8749, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31198031

RESUMO

Thiolates are a widely used ligand class for the stabilization of M(0)-containing gold and silver nanoclusters. Curiously, though, very few thiolate-stabilized Cu nanoclusters are known. Herein, we report an examination of the reactivity of RSH (R = CH2CH2Ph, n-Bu, n-C12H25) with Cu2+ under anhydrous conditions. These reactions result in the formation of fluorescent "Atlas-sphere"-type copper thiolate nanoclusters, including [Cu12(SR')6Cl12][(Cu(R'SH))6] (2, R' = nBu) and [H(THF)2]2[Cu17(SR'')6Cl13(THF)2(R''SH)3] (3, R'' = CH2CH2Ph), which were characterized by X-ray crystallography, electrospray ionization mass spectrometry, NMR spectroscopy, as well as X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopies. Consistent with our X-ray crystallographic results, the edge energies of 2 and 3 suggest they are constructed exclusively with Cu(I) ions. Similarly, EXAFS of 2 and 3 reveals long Cu-Cu pathlengths, which is also consistent with their X-ray crystal structures. Given these results, as well as past work on Cu2+/thiol reactivity, we suggest that Cu(0) is unlikely to be formed by the reaction of Cu2+ with a thiol and that previous reports of Cu(0)-containing nanoclusters synthesized by reaction of Cu2+ with thiols are likely erroneous.

10.
Acc Chem Res ; 51(10): 2456-2464, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30240192

RESUMO

Atomically precise nanoclusters (APNCs) are an emerging area of nanoscience. Their monodispersity and well-defined arrangement of capping ligands facilitates the interrogation of their fundamental physical properties, allowing for the development of structure-function relationships, as well as their optimization for a variety of applications, including quantum computing, solid-state memory, catalysis, sensing, and imaging. However, APNCs present several unique synthetic and characterization challenges. For example, nanocluster syntheses are infamously low yielding and often generate complicated mixtures. This combination of factors makes nanocluster purification and characterization more difficult than that of typical inorganic or organometallic complexes. Yet, while this fact is undoubtedly true, the past lessons learned from the characterization of inorganic complexes are still useful today. In this Account, we discuss six case studies taken from the recent literature in an attempt to identify common challenges and pitfalls encountered in APNC synthesis and characterization. For example, we show that several reducing agents employed in APNC synthesis, including the commonly used reagent NaBH4, do not always behave as anticipated. Indeed, we highlight one case where NaBH4 reduces the ligand and not the metal center, and other cases where NaBH4 acts as a Brønstead base instead of a reducing agent. In addition, we have identified several instances where the use of phase transfer agents, which were added to mediate APNC formation, played no role in the nanocluster synthesis, and likely made the isolation of pure material more difficult. We have also identified several cases of cluster misidentification driven by spurious or ambiguous characterization data, most commonly collected by mass spectrometry. To address these challenges, we propose that the nanocluster community adopt a standard protocol of characterization, similar to those used by the organometallic and coordination chemistry communities. This protocol requires that many complementary techniques be used in concert to confirm formulation, structure, and analytical purity of APNC samples. Two techniques that are underutilized in this regard are combustion analysis and NMR spectroscopy. NMR spectroscopy, in particular, can provide information on purity and formulation that are difficult to collect with any other technique. X-ray absorption spectroscopy is another powerful method of nanocluster characterization, especially in cases where single crystals for X-ray diffraction are not forthcoming. Chromatographic techniques can also be extremely valuable for assessing purity, but are rarely used during APNC characterization. Our goal with this Account is to begin a discussion with respect to the best protocols for nanocluster synthesis and characterization. We believe that embracing a standard characterization protocol would make APNC synthesis more reliable, thereby accelerating their integration into a variety of technologies.

11.
Inorg Chem ; 57(14): 8189-8194, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29943571

RESUMO

Herein, we report a re-examination of the synthesis and characterization of monolayer-protected Co x(SCH2CH2Ph) m nanoclusters. These clusters were reportedly formed by the reaction of CoCl2 with NaBH4 in the presence of HSCH2CH2Ph and were suggested to contain between 25 and 30 Co atoms. In our hands, however, we found no experimental evidence to support the existence of these large clusters in the reaction mixture. Instead, this reaction results in the relatively clean formation of the cobalt(II) coordination complex [Co10(SCH2CH2Ph)16Cl4] (1). Complex 1 has been fully characterized using a wide variety of techniques, including single-crystal X-ray crystallography, NMR spectroscopy, mass spectrometry, and magnetometry. This complex represents the first example of a thiolate-protected Co(II) T3 supertetrahedral cluster.

12.
J Am Chem Soc ; 140(1): 394-400, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29211459

RESUMO

The development of atomically precise nanoclusters (APNCs) protected by organometallic ligands, such as acetylides and hydrides, is an emerging area of nanoscience. In principle, these organometallic APNCs should not require harsh pretreatment for activation toward catalysis, such as calcination, which can lead to sintering. Herein, we report the synthesis of the mixed-valent organometallic copper APNC, [Cu20(CCPh)12(OAc)6)] (1), via reduction of Cu(OAc) with Ph2SiH2 in the presence of phenylacetylene. This cluster is a rare example of a two-electron copper superatom, and the first to feature a tetrahedral [Cu4]2+ core, which is a unique "kernel" for a Cu-only superatom. Complex 1 can be readily immobilized on dry, partially dehydroxylated silica, a process that cleanly results in release of 1 equiv of phenylacetylene per Cu20 cluster. Cu K-edge EXAFS confirms that the immobilized cluster 2 is structurally similar to 1. In addition, both 1 and 2 are effective catalysts for [3+2] cycloaddition reactions between alkynes and azides (i.e., "Click" reactions) at room temperature. Significantly, neither cluster requires any pretreatment for activation toward catalysis. Moreover, EXAFS analysis of 2 after catalysis demonstrates that the cluster undergoes no major structural or nuclearity changes during the reaction, consistent with our observation that supported cluster 2 is more stable than unsupported cluster 1 under "Click" reaction conditions.


Assuntos
Química Click , Cobre/química , Nanoestruturas/química , Compostos Organometálicos/síntese química , Dióxido de Silício/química , Reação de Cicloadição , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química
13.
Inorg Chem ; 56(14): 8390-8396, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28657306

RESUMO

We report a critical re-evaluation of the synthesis and characterization of Cu8(MPP)4. This product was reportedly formed by the reaction of Cu(NO3)2 with 2-mercapto-5-n-propylpyrimidine (HMPP) and NaBH4, in ethanol, in the presence of [N(C8H17)4][Br]. In our hands, we found no experimental evidence to support the existence of Cu8(MPP)4 in the reaction mixture. Instead, we demonstrate that the material isolated from this reaction is a complex mixture containing [N(C8H17)4]+, Br-, NO3-, and 2-mercapto-5-n-propyl-1,6-dihydropyrimidine (H2MPP*), along with the Cu(I) coordination polymer, [Cu(MPP)]n. To support our conclusions, we have independently synthesized H2MPP* and [Cu(MPP)]n, as well as the related Cu(I) coordination complexes, [Cu(HMPP*)]n and [Cu2(MPP*)]n. All new materials were characterized by NMR spectroscopy and mass spectrometry, while H2MPP*, [Cu(HMPP*)]n (n = 4), and [Cu(MPP)]n (n = 6) were also characterized by X-ray crystallography.

14.
Inorg Chem ; 55(23): 12435-12440, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934431

RESUMO

The group 11 hydride clusters [Ag6H4(dppm)4(OAc)2] (1) and [Cu3H(dppm)3(OAc)2] (2) (dppm = 1,1-bis(diphenylphosphino)methane) were synthesized in moderate yields from the reaction of M(OAc) (M = Ag, Cu) with Ph2SiH2, in the presence of dppm. Complex 1 is the first structurally characterized homometallic polyhydrido silver cluster to be isolated. Both 1 and 2 catalyze the hydrosilylation of (α,ß-unsaturated) ketones. Notably, this represents the first example of hydrosilylation with an authentic silver hydride complex.

15.
Chem Sci ; 6(1): 402-411, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936299

RESUMO

The photophysics of a covalently linked perylenediimide-diketopyrrolopyrrole-perylenediimide acceptor-donor-acceptor molecule (PDI-DPP-PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ∼6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, upon CH2Cl2 vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron-hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ∼4 µs. This result has significant implications for the design of organic solar cells based on covalent donor-acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026312, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12241290

RESUMO

The spatial structure and energy budget for Rayleigh-Taylor instability are examined using results from a 512 x 512 x 2040 point direct numerical simulation. The outer-scale Reynolds number of the flow follows a rough t(3) power law and reaches a final value of about 5500. Taylor microscales and Reynolds numbers are plotted to characterize anisotropy in the flow and document progress towards the mixing transition. A mixing parameter is defined which characterizes the relative rates of entrainment and mixing in the flow. The spectrum of each term in the kinetic energy equation is plotted, at regular time intervals, as a function of the inhomogeneous direction and the two-dimensional wave number for the homogeneous directions. The energy spectrum manifests the beginning of an inertial range by the latter stages of the simulation. The production and dissipation spectra become increasingly opposite and separate in wave space as the flow evolves. The transfer spectrum depends strongly on the inhomogeneous direction, with the net transfer being from large to small scales. Energy transfer at the bubble/spike fronts is strictly positive. Extensive cancellation occurs between the pressure and advection terms. The dilatation term produces negligible energy transfer, but its overall effect is to move energy from high to low density regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...